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Abstract- Perturbation theory is a large collection of
iterative methods for obtaining approximation solutions to
problems with small parameters like €, these problems
cannot be solved exactly. In this study, we introduce a
small ¢ temporarily into quadratic and cubic problems to
find expansion for their roots, after that the case of higher
order algebraic problems is considered.
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I INTRODUCTION

Perturbation methods are mathematical methods that is
used to find an approximate solution to a problem which
cannot be solved exactly, by starting from the exact
solution of a related problem. Perturbation theory is
applicable if the problem at hand can be formulated by
adding a "small" term to the mathematical description of
the exactly solvable problem.

In this paper we discuss perturbation theory for algebraic
equations.

Algebraic equations involving small parameter € are not
so easy to be solved by usual methods; in addition to
that, they have no exact solutions. Perturbation theory
presents efficient and powerful methods to obtain
approximate solutions to such algebraic equations. The
main goal of perturbation method is to decompose a
rough problem into an infinite number of relatively easy
ones. Solutions here are represented as an asymptotic
expansion in terms of the small parameter, such
expansion are called parameter perturbations. In this
study we begin with quadratic equations, since their
exact solutions are available for comparison. Next we
consider cubic equations and finally higher order
equations.
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IL RELIMINARIES

Here we introduce some basic definitions, theorems and
notes such as binomial theorem, asymptotic expansions,
order symbols, uniformity that we need later in our
study.

BINOMIAL THEOREM:

The binomial theorem helps us to expand quantities of
any given power without direct multiplication. Using
straight multiplication, we have:

(a+b)? =a%+ 2ab+ b?,
(a+b)® =a*>+ 3a’b +3ab? + b3
The process can be generalized for general n as:
na™'b n(n— 1)a"?b?

n _ n
(a+b)»=a"+ T + T

(1)
Equation (1) terminates when n is positive integer. If it
does not terminate, then it is true for any positive or
negative number n such that |b/a| is less than 1.

ORDER SYMBOLS:
Here we will discuss two order symbols big-oh O[.] and
little-oh o[.].

Big-oh:
We define big-oh as:
f(e) = 0[g(e)] as e—>0

. f(e)
lim——= =A where 0<|A| <
e-0 g(€)

If

Little-oh:
We define little-oh as:

f(e) = o[g(e)] as e -0



If
f(e)
im——=20
e—0 g(€)
ASYMPTOTIC EXPANSIONS:
DEFINITION 1: The functions ¢, , @, ,®5, ... form an

asymptotic sequence, or well ordered, as € — & if and
only if ¢, = 0(¢@;,) ase = &, forall m and n that
satisfym < n.

DEFINITION 2: If @1,@2,®3,.. is an asymptotic
sequence, then f (&) has an asymptotic expansion to n
terms, with respect to this sequence, if and only if

f =2k axpr(€) + o(pm)
form=1,..,n ase—>¢g;, where the ai's are
independent of € In this case, we write (as € = &gp):

f~a191(e) + azp,(e) +
azp3(e) + -+ a,@,(e).

UNIFORMITY OR BREAKDOWN
Suppose we want to represent f(x, &) for xeD, by

asymptotic expansion as f(x, &)~ Ymeq a, (X))@, (€),
This expansion is uniformity valid if

ay() @y () = o(an-1()@y_,(€)
as € = &g, for every N = 1, and every xeD, while the
expansion break down (or non-uniform), if there is
some xX€D. and some N > 1, such that

ay@Py(e) = 0 (an-1Dey_; ().

III. PERTURBATION METHOD FOR
ALGEBRAIC EQUATIONS

Here we will discuss the perturbation method for
quadratic equations, then cubic equations and finally the
n-th order equations

QUADRATIC EQUATIONS:

In quadratic equations we will discuss two examples.

EXAMPLE 1:

Consider the equation

x2—(B+2)x+2+ e=0. )

Equation (2) is called perturbed equation. When we put
& = 0, equation (2) becomes

x=-2)(x—1)=0. 2

Equation(3)is called unperturbed or reduced equation,
and the roots of this equation are x =1 and x = 2.
When ¢ is small but not zero, the roots will deviate
slightly from 1 and 2.

To determine an approximate solution we assume that
the roots have expansion of form
X =xg+ €x;+ €% x, 4 4)

Then substitute the assumed expansion (4) into
equation (2) to get:

(%o + €x1 + €2 x5+ )2 — [(B + 2¢)
(o + €x;+€%x, 4+ )] +2+e=0
©)
After carrying out some operations:
(o + &, + €2 x5+ )2 = xo° + 26 %0 %, + €]

(25 Xo X + xlz)] + (6)
Where only terms up to O (£%) have been retained.

(B+28)(xg+ex; +e%x,+ ) =B x; + 2x,)

3x0+ €2(3 x5 + 2x;) + - (7)
Substituting (6) and (7) into(5)we get:

(65> = 3% +2) +e( 2x9%; —3%; —2x5 + 1) +
e2(2xgx; + x;2—3x,— 2x) + - =0 (8

Next equating the coefficients of each power of € to
zero, yields:

xoz - 3X0 + 2= 0, (9)
2x9%, —3x;— 2x,+1=0, (10)
2 Xg X + X12 -3 Xy — ZX1 =0. (11)

After solving these three equations we get values for
Xo,X1,and x,, when substituting these values in
equation (4) we have:
x=1—¢e+3e?+ -,
x=2+43e—3e% 4

Finally the exact solution of equation (2) is:

x = %[3 +2e+/B+2:)2-42+9)] (12)
By using the binomial theorem, we have:
1

(1+8e+4€?)"/2 = 1 + 4¢ + 267 — 5 (64€” + )
= 1+4e—6e*+ -

substituting in(12) we get:

_(2+3e—3e% 4
x_{1—5+352+---

Which is in agreement with the solution we get by
perturbation method.



EXAMPLE 2:
Consider the equation

x—1Dx—a) = —&x (13)

When € = 0, equation (13) reduces to
x—1Dx—-a)=0

The roots of the last reduced equation arex =
1and x = a. We need approximations to the roots of
(13) in the form

XxX=x9+ ex,+ &%x, + - (14)

Substituting (14) into(13), we have:
[(xg =14+ ex;+)xg —a+ €x,+-+)] =
—&e(xg + €x1 + €2x5 4+ ++)
Which upon expanding, yields:
(g = D(xg —a) + e (xg — Dx; + €%(xp — Dx;,
te(xg —a)x, + €%x,.2 + €2(xg — a)x, + &exg +
e2x; +=0
Collecting coefficients of like power of € gives:
(g —D(xg —a) +e[(2xg —1— a)x; +x4]+
e[(2xg —1—a)x, + 24+ x, ]+ =0  (15)
It is clear that only terms up to O(e?) have been
retained. Equating the coefficient of each power of ¢ in
(15) to zero, we get:
(xg = D(xg —a) =0, (16)
(2xy —1—a)x; +x5 =0, 17)
[(2xg —1—a)x, +x.2+ x;]1=0.(18)
The solutions of (16) are:
X =1, 0r xg =a
When x, = 1, equation (17) becomes:
(1-a)x; +1=0,sothat x; = — =

1-a
Then (18) becomes:
1 1
1- =—
A-ax =-g=wt 1,
_ a
- -a?
or
a
X, = ——
(1-a)
Hence, the first root is:
£ ag?
x=1—- —— (19)

1-a (1-a)3
When x, = a, equation (17) becomes:
(a—1)x; +a =0 so that x; =1L

-a
Then, (18) becomes:
2

a a
(a—1Dx, = — -
1-a (1-a)?
_ a
T -o)?
or
_ a
N CRAE

Hence, the second root is:

as ae?
X —a+§+—(1_a)3+"‘ (20)

Equations (19) and (20) indicate that our expansion
breakdown when a — 1, a need not be exactly equal 1
for the above expansion to breakdown. According to the
definition of non-uniformity we will determine the
condition under which successive terms are the same
order, it follows from (19) that the zeroth order and the

first order term have the same order when
i=0(1) or 1—a=0()
Whereas the first order and second order terms are the

same order when

€ 82
= 0(G5p) o a-a?=06)
Since for small e, e/ is bigger than €, the region of
nonuniformity is 1 —a =0 ( 51/2), the larger of the

two region.
Now to investigate the exact solution. We rewrite (13)
as:
x2—x—ax+a+ ex=0
or
x2—(1+4+a—&x+a=0
Whose roots are given by:
1+a—¢ +/(1+a—¢g)2—4a
2
1+a—¢ +/(1-a)2-2e(1+a)+(&)2

X =

(21)
2

Next, we expand (21) for small € and compare the result

with (19) and (20) using the binomial theorem, we

have:

[(1—a)?— 2¢(1 +a) + (£)?]'2

_ _ _ &(1+a) (e)? _ 4g? (1+a)?
=(1-a1 (1-a)? + 2(1-a)? 8(1-a)* +]

_ _ _e(t+a) 2¢2 a

=(1-a)1 T ] (22)

And also here the terms have been retained up to 0(g2).
Putting (22) into (21) with the positive sign gives one
of the roots as:

x=%[1+a—£+1—a—8(11—::)—
2¢2 a
(1—a)3+m] (23)
or
x=1-—S £

1-a (1-a)3
Now putting (22) into (21) with the negative sign gives
the second root as:

X = 1[1+a—£—1-|-a-|-£(1+a)+
2 1-a
2% a
(1-a)3 ]
or
2
x—a4 Ly L (24)

1-a (1-a)3
In arriving at (23) and (24) from the exact solution.
The subtraction and addition operation are usually
justified, so, the exponentiation operation is the suspect
operation. In approximating



y v, D
(1-w)/z byl—-—+52—4-
We made the implicit assumption that |u| < 1. in the

present example,
_ 2&e(1+a)?—¢2

—a)? (25)
And this magnitude is small when we compare it with 1
only when a is away from 1. At a=1, u= oo,
irrespective of small € is as long as it is from zero. (25)
show that the binomial expansion in not justified when
u=01D)or 1-a)?=0()orl—a=0("2)
So, to obtain a uniform expansion when 1—a =
0(51/ 2 ), we must modify above procedure by taking
this fact into our account. this can be done by
introducing the parameter ¢ we defined it by:
l-a=¢lo (26)
Where o is independent of &. Putting (26) in (13)
gives:
(x—l)(x—1+ el 0)= —&x
(27)
When ¢ = 0, (27) reduces to:
x—-1)2%=0
Which yields the double rootx = 1. This fact and the
presence of /2 in (27) suggest trying an expansion in
the form:
x=1+ e/ Xq + e (28)
We stop at 0(81/ 2 ) because obtaining the higer-order
terms is straightforward substituting the first two terms
in (28) into (27) gives;
(el/z x; + ~~)(sl/z X, +el2o+ ) =

—e(1+&72x + )
or

ex;2+eox; +e+-=0
By collecting the coefficient of the same power to zero
we get:

%2 +ox; +1=0
Whose roots are:

(-0)+Vo?—4
X, = >

Therefore, the roots of (13) in this case are given by:

x:l—gl/z (L ‘20'2_4)4_...
x=1—£1/2 (w).'.
CUBIC EQUATIONS:

Here we will view two examples:

EXAMPLE 1:
Consider the equation

xX3—(6+&)x?+(11+28)x—6+2=0 (29)

We assume that the roots have expansion in the form:
X =Xo+Exy + - (30)
Substituting (30) into (29)to get:
X3 + 3ex0%x; — 6x92 — 12ex0x; — £x°
+ 11xy + 11lex; + 2ex5 — 6 + -+
Collecting coefficients of equal powers of € gives:
X0 — 6x2 + 11xy — 6
+ & (3x0%x; — 12x0%; + 11x; — x4°
+2x%)+=0
Where terms up to O(g) have been retained, consistent
with our expansion. Equating the coefficients of the
same power € of to zero yields:
X2 —6x52 +11x, —6=0 (3D
3x02x; — 12x0x; + 11x; — x02 + 2%, = 0 (32)
By solving equation (31) we get that x, = 1, x5 = 2,
xo = 3. It follows that:
2
X 2x, (33)
3x9%2 — 12x, + 11
When x, =1, it follows from (33) that x; = _—; . So

X1 =

the expansion given by: x =1 — %e + -

When x, = 3, it follows from(33) that x; = z Hence,
the expansion given by: x = 3 + %s + -

And when x, = 2, it follows from (33) that x; =0,
Hence, the expansion given by: x = 2 + (0)e + ---.

EXAMPLE 2:
Consider the equation

ex’+ x+2+e=0 (34)
As e — 0, (34) reduces to:

x+2=0
Again, let us try an expansion in the form

X =Xxg+&xy + - (35)

Substituting (35) into (34) we get:
e(xo+ exy+ )P +xp+ex; ++2+e=0

or

Xo+ 2+l +xE+1D)+-=0
Equating coefficients of same powers of €, we have:

Xo+2=0

Xi+x3+1=0
Hence, x, = —2 andx; = 7. So, one of the roots is
given by:

X=-2+7+ -

We note that the other roots tend to oo as€ — 0, to find
these roots, we introduce a variable y, where

y
x = s ,v>0 (36)
Substituting (36) into (34), we have
eV yd+eVy+24e=0 (37)

In order to obtain a nontrivial solutions, we require that
at least two leading-order terms in equation (37) have
the same order of magnitude. This is called the principle
of dominant balance.



In equation (37) balancing the first two terms, we find
that:

1
2v=1 or V==

By substituting the value of v in equation (37) we have
VAR Y _
e 2 y°+¢e zy+2+e=0

or
V+y+2elzt e2=0 (38)

For equation (38) suppose another expansion, so let
y=Yo+ yelzt (39)

Now substitute(39) into (38) we get:
O+ yielz 4+ (yo+ yrel2+-)+
1 _
2e/24.-=0
or
Y+ 3yiyie 4 yo+ yrelat2 ezt
=0
Now equating coefficients of the same power of €, we
have:
Y6+ ¥ =0 (40)
3y§y1+y1+2=0 (41)
The solutions of (40) are:
yo = 0, yo = i, al’ld yo = —1.
When y, = 0, equation (41) becomes
y; +2 = 0.So that y; = —2.
Hence, the first root is:
y = 0-— 281/2+“'
The corresponding solutions for x are
x = —2 + ---, we notice that this root corresponds to the
first root, so we discarded it.
When y, = +i, (41) becomes:
—2y; +2 =0sothaty, = 1.
So the second and the third root are
y=4i+ el2+-
The corresponding solutions for x are

+i
X = BEVE + 14+
g/
HIGHER ORDER EQUATIONS:

Now, we will talk about higher—order equations, and we
will focus on the case that the small parameter
multiplies the highest power of x. We have:
eX"=x"+ Ay x™ 1+ -+ agx + ag (42)
a's are constants independent of € and x, n and m are
intgers, and n > m. when € — 0, equation(42) becames:

XM+ Qo x™ M+t x+ay =0 (43)
This equation has ag roots, where s = 1,2, ..., m.
Let the expansion of the root as:

X =xo+exy+ - (44)
Substitute (44) in (42), we have:

e (xo +ex, + )n = (xo + &%, + )m + a4

m-1 m—2
(xo+ex; +++) JHama(xo+ex;+-) 4
+a;(xo + &x; + ) + ag
or
Ko™ + A1 X0™ T+ Ao Xg™ 2+ e+ ag xg + ag +
elmxy™ ™t + (m— Day_1xg™ 2+ (m —
2) A xo™ 3+ ag]x; —exg" + 0(e?) =0
Equating the coefficients of like powers of € we have,
Xo™ + Q1™+ -+ agxg +ag =0 (45)
Equation (45) has the rootsx, = ag,where s =
1,2, ..., m, it is follows that:
X1 = asn [‘rnasm_1 + (m - 1)am—1as

+(m—2)a,_,as™ 3+ +a,]7?!

m-—2

Hence,
x =as + ea [ma, + (m— 1)agy,_ ag
+(Mm—=2)apm_a™ 3+ + a7t
+ - (46)
(46) Breaks down when the term inside brackets go to
zero, in this case, the expansion goes in fractional
power of € and we need to follow the procedure used in
example 2 in quadratic equation.
We have (n —m) other roots, which tend to o as
& > 0 because ¢ multiples the highest power of x. To
find these roots we introduce a variable y, where
x=2 , v>0 (47)
Substituting (47) into(42), we have

y y Y m—
—5(8—1,)" + (E—v)m + am—1(£—,,)m !

m-—2

Y im- Yy
+am_2(g__u)m 2 + e +a1€_v+a0

=0 (48)

In equation (48 ) balancing the first two terms, we find
that

g(l—nv) = g~ v(n-m) — €

v(n—m)=1 or v= ——

n-m

If we multiply all terms in equation(48) by €™~V we
get:

or &

Y'=y" t Ay y" e
a,y e? D1 4 goemt (49)
For equation (49) suppose another expansion as
follows:
Y= (Yot yi€"+-) (50
Now substituting(50) into (49) we get:
Dot yre”+-)"= (yo+ yr & +--)"
+ a1 (Yot 1 &+ )" + 4 a (Yo
+y L ) gv(n—l)—l + aogv(n—l)

Equating coefficients of same powers of €, we have
n-m

yom — yon or Yo =1 = e2lrm
Where r =1,2,3,...,(n — m).
Hence,
Yo = w,w?, ...,0", ® =exp (Rin/(n—m))
,k=(n—m)

Now equating the coefficients of €V to get



n oy tyi=m oy v+ Aoy Yot

We get
_ ap_1yo™? am-—1 _am-1
Y1y Tomyo™ 1~ nyo™M-m  n-m
Now substitute the root in equation (50), so we have:
_ory dm-1
y=w +———¢& + -
n—m
The corresponding solutions for x are
T
X = @ am_l + .-

eV n—m
Wherer = 1,2,3,...,n —m.
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